Tubulin oligomers and microtubule assembly studied by time-resolved X-ray scattering: separation of prenucleation and nucleation events.
نویسندگان
چکیده
This paper describes a time-resolved X-ray scattering study of microtubule assembly by synchrotron radiation. The method is complementary to light scattering but allows a better distinction between oligomeric and polymeric assembly states. With an improved rapid temperature jump device, it is shown that temperature-induced microtubule assembly is preceded by prenucleation and nucleation events involving oligomers of tubulin, in analogy with earlier results from near-equilibrium temperature scans. In general, the two phases closely overlap, but in certain conditions they can be observed separately. The prenucleation events seen by X-rays can be described as a rapid temperature-dependent equilibrium, with ring oligomers dissociating into smaller oligomers and subunits at elevated temperature. Different solution conditions affect mainly the time lag between the prenucleation and nucleation phases; this in turn determines the apparent magnitude of the prenucleation steps. By contrast, the temperature dependence of the equilibrium between the prenucleation oligomers shows little influence on solution conditions. The results suggest that the ring-forming and tubule-forming assembly modes of tubulin are governed by different interactions between subunits, although they may be based on a pool of similar intermediates.
منابع مشابه
Structural intermediates in the assembly of taxoid-induced microtubules and GDP-tubulin double rings: time-resolved X-ray scattering.
We have studied the self-association reactions of purified GDP-liganded tubulin into double rings and taxoid-induced microtubules, employing synchrotron time-resolved x-ray solution scattering. The experimental scattering profiles have been interpreted by reference to the known scattering profiles to 3 nm resolution and to the low-resolution structures of the tubulin dimer, tubulin double rings...
متن کاملDynamics of the microtubule oscillator: role of nucleotides and tubulin-MAP interactions.
Microtubules can be induced to perform synchronous and periodic cycles of assembly and disassembly at constant temperature. The process depends on GTP hydrolysis. Time-resolved X-ray scattering using synchrotron radiation shows a cyclic interconversion of tubulin subunits, microtubules and oligomers (= short protofilament fragments). Oscillations are correlated with conditions that stabilize po...
متن کاملErythrocyte microtubule assembly in vitro. Determination of the effects of erythrocyte tau, tubulin isoforms, and tubulin oligomers on erythrocyte tubulin assembly, and comparison with brain microtubule assembly.
Two tubulin variants, isolated from chicken brain and erythrocytes and known to have different peptide maps and electrophoretic properties, are demonstrated to exhibit different assembly properties in vitro: 1) erythrocyte tubulin assembles with greater efficiency (lower critical concentration, greater elongation rate) but exhibits a lower nucleation rate than brain tubulin, and 2) erythrocyte ...
متن کاملCLIP-170/Tubulin-Curved Oligomers Coassemble at Microtubule Ends and Promote Rescues
BACKGROUND CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS We used the N-terminal part of CLIP-170 (named ...
متن کاملMicrotubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study
Microtubules display the unique property of dynamic instability characterized by phase changes between growth and shrinkage, even in constant environmental conditions. The phases can be synchronized, leading to bulk oscillations of microtubules. To study the structural basis of dynamic instability we have examined growing, shrinking, and oscillating microtubules by time-resolved cryo-EM. In par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 26 4 شماره
صفحات -
تاریخ انتشار 1987